Description
8142-DO-DC Multi channel module
высотой 3U, расположенный в раме управления под DSPX.
волоконно – оптический разъем на передней панели и передаются в модуль обнаружения заземления.
ABB: Запасные части для промышленных роботов серии DSQC, Bailey INFI 90, IGCT, например: 5SHY6545L0001 AC1027001R0101 5SXE10 – 0181, 5SHY3545 L0009, 5SHI3545L0010 3BHB013088 R0001 3BHE009681R0101 GVC750BE101, PM866, PM861K01, PM864, PM510V16, PPD512, PPPD113, PP836A, P865A, 877, PPP881, PPPP885, PPSL500000 4 3BHL00390P0104 5SGY35L4510 и т.д.
General Electric: запасные части, такие как модули, карты и приводы. Например: VMVME – 7807, VMVME – 7750, WES532 – 111, UR6UH, SR469 – P5 – HI – A20, IS230SRTDH2A, IS220PPDAH1B, IS215UCVEH2A, IC698CPE010, IS200SRTDH2ACB и т.д.
Система Bently Nevada: 350 / 3300 / 1900, предохранительные зонды и т.д., например: 3500 / 22M, 3500 / 32, 3500 / 15, 3500 / 23500 / 42M, 1900 / 27 и т.д.
Системы Invis Foxboro: Серия I / A, управление последовательностью FBM, трапециевидное логическое управление, обработка отзыва событий, DAC,
обработка входных / выходных сигналов, передача и обработка данных, такие как FCP270 и FCP280, P0904HA, E69F – TI2 – S, FBM230 / P0926GU, FEM100 / P0973CA и т.д.
Invis Triconex: Модуль питания, модуль CPU, модуль связи, модуль ввода – вывода, например 300830937214351B, 3805E, 831235114355X и т.д.
Вудворд: контроллер местоположения SPC, цифровой контроллер PEAK150, например 8521 – 0312 UG – 10D, 9907 – 149, 9907 – 162, 9907 – 164, 9907 – 167, TG – 13 (8516 – 038), 8440 – 1713 / D, 9907 – 018 2301A, 5466 – 258, 8200 – 226 и т.д.
Hima: модули безопасности, такие как F8650E, F8652X, F8627X, F8678X, F3236, F6217, F6214, Z7138, F8651X, F8650X и т.д.
Honeywell: Все платы DCS, модули, процессоры, такие как: CC – MCAR01, CC – PAIH01, CC – PAIH02, CC – PAIH51, CC – PAIX02, CC – PAON01, CC – PCF901, TC – CR014, TC – PD011, CC – PCNT02 и т.д.
Motorola: серии MVME162, MVME167, MVME172, MVME177, такие как MVME5100, MVME5500 – 0163, VME172PA – 652SE, VME162PA – 344SE – 2G и другие.
Xycom: I / O, платы VME и процессоры, такие как XVME – 530, XVME – 674, XVME – 957, XVME – 976 и т.д.
Коул Морган: Сервоприводы и двигатели, такие как S72402 – NANA, S6201 – 550, S20330 – SRS, CB06551 / PRD – B040SSIB – 63 и т. Д.
Bosch / Luxer / Indramat: модуль ввода / вывода, контроллер PLC, приводной модуль, MSK060C – 0600 – NN – S1 – UP1 – NNN, VT2000 – 52 / R900033828, MHD041B – 144 – PG1 – UN и т.д.
(5) Perform predictive maintenance, analyze machine operating conditions, determine the main
causes of failures, and predict component failures to avoid unplanned downtime.
Traditional quality improvement programs include Six Sigma, Deming Cycle, Total Quality Management (TQM), and Dorian Scheinin’s
Statistical Engineering (SE) [6]. Methods developed in the 1980s and 1990s are typically applied to small amounts
of data and find univariate relationships between participating factors. The use of the MapReduce paradigm to simplify data processing in
large data sets and its further development have led to the mainstream proliferation of big data analytics [7]. Along with the development of
machine learning technology, the development of big data analytics has provided a series of new tools that can be applied to manufacturing
analysis. These capabilities include the ability to analyze gigabytes of data in batch and streaming modes, the ability to find complex multivariate
nonlinear relationships among many variables, and machine learning algorithms that separate causation from correlation.
Millions of parts are produced on production lines, and data on thousands of process and quality measurements are collected for them, which is
important for improving quality and reducing costs. Design of experiments (DoE), which repeatedly explores thousands of causes through
controlled experiments, is often too time-consuming and costly. Manufacturing experts rely on their domain knowledge to detect key
factors that may affect quality and then run
DoEs based on these factors. Advances in big data analytics and machine learning enable the detection of critical factors that effectively
impact quality and yield. This, combined with domain knowledge, enables rapid detection of root causes of failures. However,
there are some unique data science challenges in manufacturing.
(1) Unequal costs of false alarms and false negatives. When calculating accuracy, it must be recognized that false alarms
and false negatives may have unequal costs. Suppose a false negative is a bad part/instance that was wrongly predicted to
be good. Additionally, assume that a false alarm is a good part that was incorrectly predicted as bad. Assuming further that
the parts produced are safety critical, incorrectly predicting that bad parts are good (false negatives) can put human lives
at risk. Therefore, false negatives can be much more costly than false alarms. This trade-off needs to be considered when
translating business goals into technical goals and candidate evaluation methods.
Excitation system ABB module 3HAC17151-1
Excitation system ABB module 3HAC17143-1
Excitation system ABB module 3HAC17142-1
Excitation system ABB module 3HAC17127-1
Excitation system ABB module 3HAC17030-3
Excitation system ABB module 3HAC17000-2
Excitation system ABB module 3HAC17000-1
Excitation system ABB module 3HAC16905-1
Excitation system ABB module 3HAC16897-1
Excitation system ABB module 3HAC16831-1
Excitation system ABB module 3HAC16797-1
Excitation system ABB module 3HAC16795-1
Excitation system ABB module 3HAC16794-1
Excitation system ABB module 3HAC16793-1
Excitation system ABB module 3HAC16790-1
Excitation system ABB module 3HAC16789-1
Excitation system ABB module 3HAC16788-1
Excitation system ABB module 3HAC16787-1
Excitation system ABB module 3HAC16786-1
Excitation system ABB module 3HAC16784-1
Excitation system ABB module 3HAC16783-1
Excitation system ABB module 3HAC16782-1
Excitation system ABB module 3HAC16780-5
Excitation system ABB module 3HAC16780-1
Excitation system ABB module 3HAC16704-7
Excitation system ABB module 3HAC16704-1
Excitation system ABB module 3HAC1670-1
Excitation system ABB module 3HAC16672-1
Excitation system ABB module 3HAC16628-3
Excitation system ABB module 3HAC16627-3
Excitation system ABB module 3HAC16626-3
Excitation system ABB module 3HAC16626-2
Excitation system ABB module 3HAC16527-1
Excitation system ABB module 3HAC16416-1
Excitation system ABB module 3HAC16403-1
Excitation system ABB module 3HAC16402-1
Excitation system ABB module 3HAC16331-1
Excitation system ABB module 3HAC16328-1
Excitation system ABB module 3HAC16327-1
Excitation system ABB module 3HAC1629-3
Excitation system ABB module 3HAC16226-1
Excitation system ABB module 3HAC16202-1
Excitation system ABB module 3HAC1618-1
Excitation system ABB module 3HAC16037-1
Excitation system ABB module 3HAC16032-3
Excitation system ABB module 3HAC16014-1/05
Excitation system ABB module 3HAC15999-1
Excitation system ABB module 3HAC15988-1
Excitation system ABB module 3HAC15944-1
Excitation system ABB module 3HAC15879-3
Excitation system ABB module 3HAC15860-1
Excitation system ABB module 3HAC15803-1
Excitation system ABB module 3HAC15734-1
Excitation system ABB module 3HAC15732-1
Excitation system ABB module 3HAC15722-1
Excitation system ABB module 3HAC15716-1
мы организуем фото на складе, чтобы подтвердить
чтобы вернуть их вам. Конечно, мы ответим на ваши озабоченности как можно скорее.
Reviews
There are no reviews yet.