Description
8101-HI-TX Canopen Interface Module
высотой 3U, расположенный в раме управления под DSPX.
волоконно – оптический разъем на передней панели и передаются в модуль обнаружения заземления.
ABB: Запасные части для промышленных роботов серии DSQC, Bailey INFI 90, IGCT, например: 5SHY6545L0001 AC1027001R0101 5SXE10 – 0181, 5SHY3545 L0009, 5SHI3545L0010 3BHB013088 R0001 3BHE009681R0101 GVC750BE101, PM866, PM861K01, PM864, PM510V16, PPD512, PPPD113, PP836A, P865A, 877, PPP881, PPPP885, PPSL500000 4 3BHL00390P0104 5SGY35L4510 и т.д.
General Electric: запасные части, такие как модули, карты и приводы. Например: VMVME – 7807, VMVME – 7750, WES532 – 111, UR6UH, SR469 – P5 – HI – A20, IS230SRTDH2A, IS220PPDAH1B, IS215UCVEH2A, IC698CPE010, IS200SRTDH2ACB и т.д.
Система Bently Nevada: 350 / 3300 / 1900, предохранительные зонды и т.д., например: 3500 / 22M, 3500 / 32, 3500 / 15, 3500 / 23500 / 42M, 1900 / 27 и т.д.
Системы Invis Foxboro: Серия I / A, управление последовательностью FBM, трапециевидное логическое управление, обработка отзыва событий, DAC,
обработка входных / выходных сигналов, передача и обработка данных, такие как FCP270 и FCP280, P0904HA, E69F – TI2 – S, FBM230 / P0926GU, FEM100 / P0973CA и т.д.
Invis Triconex: Модуль питания, модуль CPU, модуль связи, модуль ввода – вывода, например 300830937214351B, 3805E, 831235114355X и т.д.
Вудворд: контроллер местоположения SPC, цифровой контроллер PEAK150, например 8521 – 0312 UG – 10D, 9907 – 149, 9907 – 162, 9907 – 164, 9907 – 167, TG – 13 (8516 – 038), 8440 – 1713 / D, 9907 – 018 2301A, 5466 – 258, 8200 – 226 и т.д.
Hima: модули безопасности, такие как F8650E, F8652X, F8627X, F8678X, F3236, F6217, F6214, Z7138, F8651X, F8650X и т.д.
Honeywell: Все платы DCS, модули, процессоры, такие как: CC – MCAR01, CC – PAIH01, CC – PAIH02, CC – PAIH51, CC – PAIX02, CC – PAON01, CC – PCF901, TC – CR014, TC – PD011, CC – PCNT02 и т.д.
Motorola: серии MVME162, MVME167, MVME172, MVME177, такие как MVME5100, MVME5500 – 0163, VME172PA – 652SE, VME162PA – 344SE – 2G и другие.
Xycom: I / O, платы VME и процессоры, такие как XVME – 530, XVME – 674, XVME – 957, XVME – 976 и т.д.
Коул Морган: Сервоприводы и двигатели, такие как S72402 – NANA, S6201 – 550, S20330 – SRS, CB06551 / PRD – B040SSIB – 63 и т. Д.
Bosch / Luxer / Indramat: модуль ввода / вывода, контроллер PLC, приводной модуль, MSK060C – 0600 – NN – S1 – UP1 – NNN, VT2000 – 52 / R900033828, MHD041B – 144 – PG1 – UN и т.д.
In the formula, a is the design acceleration/deceleration value: s is the current actual position value of the
elevator: V2 is the maximum speed of the elevator at this position.
Considering that the lifting system needs to enter the parking track at a low crawling speed when entering the
end of the stroke to avoid equipment damage caused by large mechanical impact, therefore, when there are still
1~5m away from the parking position, the lifting speed is limited to 0.5m/ below s.
Since the instantaneous speed before parking is very low, the position accuracy of the system”s parking can
be relatively improved, which is particularly important when the auxiliary shaft is lifted.
2.2 Design and implementation of security protection functions
Mines have particularly strict requirements on safety and reliability of hoist control systems [5]. While ensuring high
reliability of electrical control equipment, the control system also sets up multiple protections in key links where failures
may occur, and detects the actions and feedback signals of these protection devices in real time.
First of all, monitoring the operating status of the elevator is the top priority in the safety protection
function of the elevator control system. In the control system, the operating speed and position of the
motor are monitored at all times, and the current position and speed values are compared with the system”s
designed speed and position curve. Once it is found that the
actual operating speed of the hoist exceeds the designed speed value, immediately Issue an emergency
stop command and strictly ensure that the lifting speed is within the safe monitoring range during the entire
lifting process. At the same time, position detection switches are
arranged at several locations in the wellbore, and these position detection switches correspond to specific
position values and corresponding speed values. When the elevator passes these switches, if it is found through
encoder detection that the actual speed value and position deviate from the values corresponding to the position
detection switch, the control system will also judge that it is in a fault state
and immediately implement an emergency stop.
In order to determine whether the encoder connected to the main shaft of the elevator drum is normal,
two other encoders are installed on the elevator. In this way, the position and speed detection values
of the three encoders are always compared. Once it is found that the deviation between the detection
value of one encoder and the detection value of the other two encoders exceeds the allowable range,
the control system will immediately consider it to have entered a fault state and implement an emergency stop. Protective action.
3 Conclusion
The efficient and safe operation of main well equipment is an important guarantee for its function.
In the application of mine hoist, the 800xA system designed speed curve, self-correction, various
self-diagnosis and protection functions according to the specific process characteristics of the main
shaft mine hoist, which has achieved good results in practical applications.
MVI69E-GEC | PROSOFTt | Slave module
ILX69-PBM | PROSOFTt | gas flow computer MVI56-BAS
CACR-SR15BB1BM servo controller Yaskawa
MVI69E-GSC | PROSOFTt | Enhanced Communication Module
MVI69E-GEC | PROSOFTt | Ethernet enhanced communication module
IC697CPX772 | GE | single socket CPU
IC697CPU789 | GE | Triple Modular Redundancy
IC697CPU781 | GE | Scalable CPU
IC697CPU781 | GE | Programmable Logic Controller CPU
IC697CPU782 | GE | PLC Module
IC697CPX772 | GE | CPU control function
IC697CPU789 | GE | triple redundant cpu
IC697CPU788 | GE | Scalable CPU
IC697CPU782 | GE | PLC
IC697CPU781 | GE | Programmable Logic Controller CPU
IC697CPU780 | GE | Single-slot PLC CPU
IC697CPU772 | GE | 12 MHz, 32 KB CPU (复制)
IC697CPU771 | GE | Programmable Logic Controller CPU
IC697CPU731 | GE | 12 MHz, 32 KB CPU
IC697CPM925 | GE | 1-slot CPU module
IC697CPM914 | GE | Redundant CPU module
IC697CPM790 | GE | 64 MHz CPU
IC698RMX016 | GE | redundant memory switch
IC698PSD300 | GE | power supply
IC698PSA350 | GE | power module
IC698PSA100 | GE | Multifunctional Power Module
IC698ETM001 | GE | Ethernet interface module
IC698CRE030 | GE | PAC Systems RX7i CPU
IC698CRE040 | GE | PAC Systems RX7i CPU
IC698CRE020 | GE | 700 MHz CPU
IC698CPE040 | GE | 1.8 MHz CPU
IC698CPE010 | GE | RX7i series CPU
IC698CPE010 | GE | CPU for GE Fanuc RX7i series
IC698CPE020 | GE | CPUs of the Systems RX7i series
IC687BEM744 | GE | FIP bus controller
IC687BEM731 | GE | bus controller
IC800VMTBC005 | GE | Breakout terminal board
IC800VMCB1100 | GE | power cable
IC800VMCB050 | GE | servo motor
IC800VMCB030 | GE | servo amplifier
IC800VMA072 | GE | 750 Watt Servo Amplifier
IC800SSI420RP2 | GE | 460 VAC S2K Controller
IC800SSI407RD2 | GE | Transformer controller
IC800SSI104D2 | GE | VersaMotion S2K Controller
IC800SSI216RD2 | GE | Servo Motor Controller
IC800SSD104RS1 | GE | S2K Series Servo Amplifiers
IC800MCUB12160XD | GE | Enlarged stepper motor
IC800SLA2502 | GE | servo amplifier
IC800BIK020 | GE | Servo amplifier kit
IC800BIHV010 | GE | High Voltage Amplifier Kit
IC800BBK021 | GE | Beta & Beta I Series Amplifiers
IC800ABK003 | GE | Built-in battery kit
IC800ABK002 | GE | Built-in battery kit
мы организуем фото на складе, чтобы подтвердить
чтобы вернуть их вам. Конечно, мы ответим на ваши озабоченности как можно скорее.
Reviews
There are no reviews yet.