Description
hardware flow control. It is an ideal choice in the field of industrial automation.
3 Case Studies on Reducing Scrap Rates
Any product assembled or produced in a factory goes through a series of quality tests to determine whether it needs to be scrapped.
High scrap rates are caused by the opportunity cost of not delivering products to customers in a timely manner, wasted personnel time, wasted
non-reusable parts, and equipment overhead expenses. Reducing scrap rates is one of the main issues manufacturers need to address. Ways to
reduce scrap include identifying the root causes of low product quality.
3.1 Data processing
Root cause analysis begins by integrating all available data on the production line. Assembly lines, workstations, and machines make up the industrial
production unit and can be considered equivalent to IoT sensor networks. During the manufacturing process, information about process status,
machine status, tools and components is constantly transferred and stored. The volume, scale, and frequency of factory production considered in
this case study necessitated the use of a big data tool stack similar to the one shown in Figure 2 for streaming, storing, preprocessing, and
connecting data. This data pipeline helps build machine learning models on batch historical data and streaming real-time data. While batch
data analytics helps identify issues in the manufacturing process, streaming data analytics gives factory engineers regular access to the latest
issues and their root causes. Use Kafka (https://kafka.apache.org) and Spark streaming (http://spark.apache.org/streaming) to transmit real-time
data from different data sources; use Hadoo (http://hadoop.apache.org ) and HBase (https://hbase.apache.org) to store data efficiently; use
Spark (http://spark.apache.org) and MapReduce framework to analyze data. The two main reasons to use these tools are their availability as open
source products, and their large and active developer network through which these tools are constantly updated.
https://www.xmamazon.com
https://www.xmamazon.com
https://www.plcdcs.com/
www.module-plc.com/
https://www.ymgk.com
IC697MDL250 GE
IC697MDL350 GE
IC697MDL652 GE
IC697MDL653 GE
IC697MDL671 GE
IC697MDL740 GE
IC697MDL750 GE
IC697MEM717C GE
IC697PCM711P GE
IC697PWR710F GE
IC697PWR710H GE
IC697PWR711 GE
IC697PWR720 GE
IC697PWR724 GE
IC697PWR748 GE
IC698ETM001-EM GE
IC698ETM001-EL GE
IC698PSA350C GE
IC698CPE030-GJ GE
IC698PSA100C GE
IC698ETM001-ER GE
IC698CPE020-KAA GE
IC698ETM001-FT GE
IC698PSA350E GE
IC698CRE030-EF GE
IC698CRE030-DE GE
IC698CPE020-BA GE
IC698CRE030-BB GE
IC698PSD300D GE
IC698CHS017C GE
IC698RMX016-CB GE
IC698CRE020-ED GE
IC698CPE020-CD GE
IC698CPE010-JV GE
IC698PSA350A GE
IC698PSA100C GE
IC698CPE020- CD GE
IC698CHS009A GE
IC698PSD300D GE
IC698CPE010-AA GE
IC698PSD300C GE
IC698CHS009 GE
IC698CHS117C GE
IC698CPE010 GE
IC698CPE020-AA GE
IC698CPE020 GE
IC698CPE020-CC GE
GE Redundant CPU Module IC698CRE030-BA
IC698CRE030-DE GE
IC698CRE030 GE
IC698ETM001 GE
IC698PSA100D GE
IC698PSA350 GE
IC698PSA350D GE
Reviews
There are no reviews yet.