Description
hardware flow control. It is an ideal choice in the field of industrial automation.
How does ABB robot multi-task? Detailed steps on how to use ABB robot multitasking
1.ABB robots support multi-tasking (each robot body can support up to one motion task).
2. To use multi-tasking, the robot must have the 623-1 mulTItasking option
3. How to create a new multi-task?
4. Control panel, configuration
5.Theme controller
6. Enter the task and create a new one
At this time, it must be set to normal, otherwise programming cannot be performed. After all programming and debugging are completed, set it back to
semi staTIc and it will start running automatically.
7. Restart
8. The program editor enters t2 task.
9. How to transfer data between multiple tasks? The following takes the bool amount flag1 transferred between tasks as an example (that is, if any task
modifies the flag1 value, the flag1 value of the other task is also modified)
10. Both the front-end and the back-end must create data. The storage type must be a variable with the same type and the same name, for example:
Pers bool flag1
That is to say, both tasks must have this flag1, and it must be a variable variable.
11. In t2, the code is as follows
12. The foreground task code is as follows
The above can realize the background task to scan the di_0 signal in real time. If the di_0 signal changes to 1, flag1 is true. According to logic, the front
desk waits for flag1 to be true. After executing waituntil, set flag1 to false
13. How to run?
Click on the bottom one in the lower right corner of the teach pendant, make sure both tasks are checked, and then run it. You can test it.
14. There is no problem in the test. Enter the configuration interface, change t2 to semi staTIc, and restart. At this time, t2 cannot be selected and it has started
running automatically.
Analysis of ABB Robot Simulation Technology
The competitive pressure in the industrial automation market is increasing day by day, and customers are demanding higher efficiency in production to
reduce prices and improve quality. Spending time testing or commissioning a new product at the beginning of a new product is not feasible today because it would
mean stopping existing production to program the new or modified part. ABB”s RobotStudio is built on ABB VirtualController. We can use it to easily simulate the
on-site production process on the computer, allowing customers to understand the development and organization of the production process.
robotstudio features:
1. CAD import
RobotStudio can easily import data in various mainstream CAD formats, including IGES, S TE P, VRML, VDAFS, ACIS and CA TI A, etc. Robot
programmers can use these precise data to program robots with higher accuracy, thus improving product quality.
2. Automatic path generation
One of the most time-saving features in RobotStudio. By using a CAD model of the part to be processed, this function can automatically
generate the robot position (path) needed to track the machining curve in just a few minutes, a task that would normally take hours or even days.
3. Program editor
The program editor (Program Maker ) can generate robot programs, allowing users to develop or maintain robot programs offline in
a Windows environment, which can significantly shorten programming time and improve program structure.
4. Path optimization
The Simulation Monitor is a visual tool for robot motion optimization, with red lines showing where improvements can be
made to make the robot operate in the most efficient way.
5. Automatically analyze stretching ability
Users can use this function to move the robot or workpiece arbitrarily until all positions are accessible, and the work
cell floor plan verification and optimization can be completed within minutes.
6. Collision detection
Collision detection function can avoid serious damage caused by equipment collision. After selecting detection objects,
RobotStudio can automatically monitor and display whether these objects will collide when the program is executed.
7. Online homework
Use RobotStudio to connect and communicate with real robots, and perform convenient monitoring, program modification,
parameter setting, file transfer, backup and recovery operations on the robot.
ACSM1-04AM-016A-4 Mechanical drive module
1756-CNBR/E Communication interface module
3HAC025338-004/06D main servo drive unit
1747-L552/C SLC 500 processor
3HAC7998-2 Cable
IS200ERRRH1A Redundant relay for exciter regulator
2711P-T10C15D1 Operator terminal
2711P-T10C15D1 Operator terminal
2711P-T10C15A1 Operator terminal
2711P-T7C15D1 Touch screen
UFC719AE101 3BHB003041R0101 Controller module
UGTMEM-03LBB11 22.5V servo motor
20BD8P0A3AYNAND0 Digital PWM AC driver
6FC5203-0AF02-0AA1 Siemens Operating panel
HE693SNP306AX Cable connector
QTERM-K65 Beijer panel installation man-machine interface
2711PC-T6C20D8 PanelView Plus 6 Compact 600 Graphics terminal
CIMREX60 BEIJER Operator Panel
NTCF23 Optical fiber communication terminal
F3322 Digital output module
F7133 4-channel power distribution module
6181P-15TP2KH integrated display computer
IS220PSVOH1A servo control package
8440-1715 SPM-D11 synchronizer WOODWARD
FC-TSAI-1620M Security manager system module
TSXP57204M SCHNEIDER Processeur TSX 57
IMDSO04 Digital slave output module
P0926JM FOXBORO Secondary power input
330851-02-000-060-10-00-00 Expansion sensor
330850-50-00 BENTLY NEVADA preprocessor
330854-040-24-00 Differential extension cable
1746-NIO4V Analog Input
1785-V40L Programmable controller
TRICONEX 3720 Communication Module 3721 3721C
PFTL101B 2.0KN 3BSE004185R1 Tension sensor
DS200SIOBH1ACA circuit board module
UTV-F2500HA Manipulator controller
6DD1661-0AB1 Communication component
Reviews
There are no reviews yet.