Description
hardware flow control. It is an ideal choice in the field of industrial automation.
3.2 Upgrading of regulators and control systems
For the upgrade of the regulator, the original excitation control system cabinet structure is retained, and the entire system is upgraded by upgrading the board card.
Among them, the CoB main board, MUB measurement board, F10 input and output board, and LCP local control panel were replaced with the PEC800 controller,
CCM measurement control interface board, CIo comprehensive input and output board, and ECT excitation system control terminal in the Unitrol6800 system respectively.
For the upgrade of the power cabinet, since the power of the excitation system will not change during the transformation, the N-1 redundant configuration of the five
UNL3300 rectifier bridges in the original system has not been changed, but the control and measurement parts of the rectifier
bridge have been upgraded. And the fan circuit and power control part of the rectifier bridge have been upgraded. Among them, the signal interface board (PsI) was
changed to the rectifier bridge signal interface board (CsI), the circuit breaker of the rectifier bridge panel was changed from CDP to CCP, and the rectifier bridge control
interface board (CIN) was changed to the rectifier bridge control board (CCI).
For the upgrade of the demagnetization cabinet, the switch control part was mainly upgraded. By adding a CIo board to the switch cabinet and installing a special
power distributor and relay to control the demagnetization switch, the original PsI board was removed. Secondly, in the transformation of the current detection part,
the Hall element in the Unitrol5000 system was replaced by the current relay of the Unitrol6800 system.
For the upgrade of the excitation current measurement part, the rectifier side Hall element of the rectifier bridge was replaced with an AC side CT. Relying on the linearity of the
CT, the current sharing coefficient of the excitation system was increased to 0.98, so that the role of the rectifier bridge can be fully exerted in the system. .
For the upgrade of the fan power supply circuit of the rectifier cabinet, each power cabinet can independently control the power supply of the fans in the
cabinet to avoid the problem that if the power circuit relay fails in the original system, all the fans will not work.
3.3Unitrol6800 functional logic configuration points
The Unitrol6800 system adds PT slow-blow judgment logic, and defines the actions of PT slow-blow as alarm and channel switching. The system PT
slow-blow logic pressure difference is 2% to ensure sufficient sensitivity. Since some external reasons will cause the sequential increase or decrease of magnetic
commands, a special increase or decrease magnetic contact adhesion judgment logic has been added to effectively lock out external causes. At the same
time, it can
avoid the jitter of the relay on the increase or decrease magnetic circuit and ensure the stability of the circuit. The excitation temperature detection is used to
alarm in the system, but it cannot control the system tripping. The tripping intermediate relays K291 and K292 use high-power (≥5w) relays to avoid
the problem of tripping of the excitation system
due to signal interference.
4 Problems discovered during the transformation and their solutions
After upgrading the excitation system from Unitrol5000 to Unitrol6800, since the partition between the regulator cabinets of the original excitation switch
cabinet was removed and the mounting backplate of the regulator was moved forward, the hot air from the excitation switch cabinet will enter the excitation regulator
cabinet, causing the cabinet to be damaged. The internal temperature rises, and sometimes the temperature can even reach 45°C. In order to avoid problems caused
by high temperatures, partitions were added to reduce the temperature inside the switch cabinet and control the
temperature to 30°C.
During the maintenance process, if the grounding carbon brush of the generator is removed, it is easy to cause the rotor grounding relay isoLR275 to
malfunction. Therefore, during maintenance, the power supply of the grounding relay will be disconnected and the large shaft in the magnetic cabinet will be short-circuited.
5 Conclusion
Through the transformation of the excitation system, our company not only meets the needs of increasing the generator capacity, but also
eliminates the safety hazards of ARCnet failure or flat cable damage in the excitation system of the unit. It can find the fault point during maintenance
and prevent the unit from non-stop. event. The new board used in the new excitation system has modular characteristics, which can make online maintenance more
convenient, and because the boards use trigger pulse generation communication and optical fiber redundant communication, the stability of
information transmission is ensured. Avoid communication failures and damage to pulse lines.
ALSTOM 730475-D ELEMENTS-F2 PCD board
ALSTOM 42011-106-00 A01 ITC_VIOM_VIOC VER.A01
ALSTOM 12004-102-01 VPS BOARD VER.C
HIMA H51q-HRS B5233-2 997205233 central rack 19 inches, 5 HU
HIMA H51q-H B5233-2 997235233 central rack 19 inch, 5 HU
A-B 1746-TB3G terminal base
1794-ASB Flex I/O Communication Adapter
A-B 1794-OB8EP Flex I/O Digital DC Output Module
Allen-Bradley 1794-IE8 Flex I/O analog input module
A-B 1794-IR8 Flex I/O RTD Module
Allen-Bradley 1794-IB16 FLEX I/O Input Module
Schneider TSX3721101 Modular Base Controller 24 V
Allen-Bradley1756-EN2T EtherNet/IP Bridge Module
1756-IF16 ControlLogix Analog Input Module
Allen-Bradley 1756-PA72 ControlLogix Standard Power Supply
1756-A7 Small and compact chassis
S22460-SRS S200 Brushless Servo Driver
KSD1-08 KUKA 00-122-284 Servo Module
1756-ENBT/A EtherNet/IP 10/100 Bridge Module
A-B 1756-IB32 input module
1786-RPA/B A-B repeater adapter
A-B 1756-RM2 ControlLogix Redundancy Modules
TRICONEX 3805E nalog Output Modules 3806E
XTB750B01 HUCD420038R0001 HIEE440503P201 ABB PCD board
SAM ELETRONICS EMP2200 controller
TRICONEX 4351B communication module
140471-01 I/O modules
87-008145-03 PARKER Microstepping Drive
CI541V1 3BSE014666R1 Profibus Interface Submodule
9907-247 Woodward 828 Digital Control Hardware
9907-033 speed control device
9907-034 DSLC Digital Synchronizer
9907-032 High Voltage Woodward Model 723
9907-031 723 Digital Speed Controller
9906-700 Woodward Digital Controls
9906-620 723PLUS Digital Control Model
9906-619 Woodward 723PLUS Digital Control Hardware
9906-131 Woodward 723 Digital Control
9906-130 723 digital control
8301-1146 woodward governor
8280-608 digital synchronizer
8280-604 Digital Controllers in the 723PLUS Series
8280-598 Woodward Speed/Performance Control
8280-501 Woodward Digital Controller
8280-481 High Voltage (90 to 150 Vdc) Controller
8280-480 Shared Digital Speed Controller
8280-467 speed control device
8280-465 Digital Speed Controller
8280-466 723PLUS Digital Speed Control
8280-464 Digital Speed Control in the 723PLUS Series
8280-424 Digital Industrial Speed/Performance Controllers
8280-423 digital boat speed controller
8280-422 Digital Speed Controller
8280-419 723PLUS Digital Speed Controller
Reviews
There are no reviews yet.