Description
hardware flow control. It is an ideal choice in the field of industrial automation.
According to reports, ABB”s technical expertise and experience in many industries will be combined with Microsoft”s Azure intelligent cloud system and B2B
engineering capabilities to create greater value for customers. Combined with ABB”s more than 70 million connected devices installed globally and more than
70,000 running control systems, ABB and Microsoft will join forces to create one of the world”s largest IIoT industrial cloud platforms.
It is worth noting that IoT expert Guido Jouret (formerly general manager of Cisco’s IoT department) became the group’s chief digital officer on October 1, 2016.
This marks that ABB is accelerating digital transformation and comprehensively building a new “Internet of Things+” ecosystem. ABB also hopes to obtain higher
profits from this, and has proposed a financial target for 2015-2020 of pre-tax profit growth of 11%-16%.
FANUC
FANUC recently established the IoT platform Fanuc Intelligent Edge Link and Drive (FIELD), which uses NVIDIA artificial intelligence system. FIELD can realize the
connection of machine tools, robots, peripheral equipment and sensors in the automation system and provide advanced data analysis to improve the production quality,
efficiency, flexibility and equipment reliability in the production process – thereby improving the overall efficiency of the equipment ( OEE) and promote the improvement of production profits.
The system can also improve robot productivity through artificial intelligence and bring autonomous learning capabilities to automated factory robots around the
world. FANUC will use a series of GPUs and deep learning software designed and produced by NVIDIA to enable AI artificial intelligence to be used in clouds, data centers
and embedded devices.
When talking about the cooperation with FANUC, NVIDIA co-founder and CEO Jensen Huang said that the era of AI artificial intelligence has officially arrived.
Through the deep learning function of GPU, it will stimulate a
new wave of software learning and machine inference calculations. The most exciting of these is the ability of robots to understand their surroundings and
interact with humans. NVIDIA is very happy to work with FANUC, the global leader in automated factories and robots, to build intelligent machines to benefit the future of mankind.
It is reported that FIELD continues the success of the existing Fanuc ZDT (zero downtime function), which effectively combines Cisco cloud technology,
IoT data collection software and point-to-point security. After connecting the robot through the use of an industrial Ethernet switch, it is then connected to Cisco”s UCS server – the system runs
based on FANUC and Cisco”s ZDT data collection software. Automotive industry users can immediately realize reductions in downtime and cost savings after using the system.
FIELD provides users and application developers with advanced machine learning and artificial intelligence capabilities and brings manufacturing to
new heights of productivity and efficiency. Currently, FANUC has applied these new technologies to robotic bulk picking, production anomaly detection and fault
prediction. Because FIELD combines artificial intelligence and cutting-edge computer technology, distributed learning is possible. The operating data of robots and
equipment are processed in real time on the network,
which also enables more intelligent coordination of production between various equipment, making complex production coordination that was previously difficult to
achieve easily completed.
In fact, many years ago, FANUC began to cooperate with Cisco to carry out the “non-stop” zero downTIme plan. In the plan, FANUC and Cisco will join forces to
build an Internet of Things system that will allow FANUC to supervise
every robot in the factory, predict abnormal conditions of the robots, and send more technicians to repair the robots before problems occur. So far, the program has
tested 2,500 robots, including FANUC”s major customer GM General Motors. According to FANUC, the test program saved customers $38 million.
YASKAWA
After talking so much about the Internet of Things strategy of the industrial robot giant, let’s take a break here at Yaskawa and talk about the past.
Midea and KUKA have officially received their marriage certificates, but you must know that as early as August 2015, Midea announced its
robot strategy and established two joint venture subsidiaries with Japan”s Yaskawa Electric.
The two subsidiaries are respectively for industrial robots and service robots, including Guangdong Yaskawa Midea Industrial Robot Co.
, Ltd. (Midea”s equity accounted for 49%) and Guangdong Midea Yaskawa Service Robot Co., Ltd. (Midea”s equity accounted for 60%).
This shows that as early as 2015, Midea was actually “in love” with Yaskawa, but by 2016, she married Kuka.
https://www.xmamazon.com
https://www.xmamazon.com
https://www.plcdcs.com/
www.module-plc.com/
https://www.ymgk.com
IS220YTURS1A Channel digital input
IS220YTCCS1A Interface Template
IS220YPROS1A Channel digital output
IS220YHRAS1A Digital quantity module
IS220PSVPH1A Communication function board
IS220PSCHH1A Communication function board
IS215PMVPH1A I/O Interface Board
IS215PMVDH1A Driver module
IS220PIOAH1A Analog input output
T9110 ICS TRIPLEX T9110 Temperature transmitter
IS220PGENH1A Connecting plate
PFSK151 3BSE018876R1 ABB Communication module
IS220PEFVH1A Main control board
IS220PPROS1B Acquisition module
3503E TRICONEX 3503E Digital Input Module
IS220PPROH1A Redundant power modules
IS220PPRAS1B High voltage appliance
3515 TRICONEX 3515 Pulse Totalizer Opto-isolated
IS220PPRAS1A-H1A Pulse amplifier board
IS220PTURH1B Communication module
IS220PTURH1A Battery circuit board
IS220PSVOH1B Servo interface I/O
IS220PCLAH1B Signal sampling sample
IS220PSVOH1A Power module
IS220PCLAH1B Signal sampling sample
IS220PCLAH1A CPU programmable controller
IS230PCAAH1B Original board card
IS230PCAAH1A
9199-00003 A6210 EMERSON Monitoring module
IS220PHRAH1B Synchronize voltage detection board
IS220PHRAH1A Channel analog input module
“FBM232 P0926GW FOXBORO”
IS220PPRFH1B Analog input module
IS220PPRFH1A Spare part module
SC510 3BSE003832R1 ABB SC560 3BSE008105R1
81EU01H-E ABB computer interface module
IS220PCNOH1B Channel, analog quantity input
IS220PCNOH1A Processor end module
IS220PSCAH1B Network interface slave station module
AO801 3BSE020514R1 ABB AO810 AO820
PM866K01 3BSE076939R1 PM866AK01 PM866 controller
IS220PSCAH1A Analog output module
IS220PRTDH1B Servo drive IS220PRTDH1A
IS220PRTDH1A Network interface slave station module
IS220PTCCH2A Analog output module
IS220PTCCH1B REV D I/O PACK MKVIe THERMOCOPLE INPUT MODULE
IS220PTCCH1A Thermocouple input module
IS220PPDAH1B processor
IS220PPDAH1A Control relay
IS220PAOCH1B Servo drive
IS220PAOCH1A I/O module
IS220PAICH2B Digital quantity output module
IS220PAICH2A DCS control system
IS220PAICH1B REV C I/O communication modules
IS220PAICH1A Frame interface module
Reviews
There are no reviews yet.