Description
Experience of using FBP bus adapter in intelligent motor controller:
(1) Fieldbus can save a lot of costs
From the installation stage, only one communication cable is used to provide power and communication to the entire network. Compared with the point-to-point control method, a large number of cables, bridges, etc. are saved, which not only shortens the installation time, but also reduces the cost. installation fee.
From a control point of view, the use of network communication and “soft” I/O methods saves I/O modules, especially analog modules. For example, for workstations such as intelligent motor controller UMC22 or frequency converters, start/stop, start mode, acceleration/deceleration and other commands; parameters such as voltage, current , temperature, running time, etc. can all be realized from bus network communication.
(2) The equipment failure rate is greatly reduced, diagnosis is convenient, and elimination is rapid.
Because the FBP system uses only one communication cable to control the entire equipment network, the equipment failure rate is greatly reduced. The use of data communication to control each station not only greatly reduces the number of cables in the traditional point-to-point method, but also greatly reduces fault links and further improves system stability.
The centralized control of the motor through the FBP system is very effective, which greatly facilitates the diagnosis of equipment faults. For example, when a certain intelligent motor controller UMC22 fails, not only can the alarm information be seen in the central control room, but the alarm information can also be obtained from the operation panel of the UMC22, which is convenient and fast.
Engineering practice shows that 80% of bus faults occur in the bus cable itself, and the FBP system provides pre-installed cables with metal contacts to minimize the possibility of faults caused by cable problems.
(3) System monitoring is more convenient and intelligent.
The FBP system makes it more convenient for operators to access the working status of field stations and adjust control parameters at any time. Such as motor current, temperature and other parameters to ensure the normal operation of the motor.
(4) Plug and play (P&P) system expansion.
Because FBP adopts a “hand-in-hand” connection method, users can expand and insert the required monitoring objects in any link as needed.
Application 2 of ABB FBP bus adapter in intelligent motor controller:
Figure 5 Application of FBP and PDQ22 in smart motors
In Figure 5, the FBP system uses the PDQ22 device integrated with the Profibus protocol. Profibus and other fieldbuses use the standard RS 485 method. Each segment is limited to 32 master/slave stations. If more devices need to be connected, additional devices are required. relay. Using PDQ22, you can connect 4 devices each to the Profibus DP bus, but as a node in the bus, you can save the number of bus nodes. Has the following characteristics:
Up to 4 FBP adapters can be used at one bus node;
Reliable system concept: detect equipment faults and indicate bus and equipment status;
Simple system integration: free access to parameters, operating and diagnostic data of connected devices; integrated maintenance management.
5. ABB FBP bus adapter is used in software configuration of intelligent motor controllers
PS501 programming software is used in this system. It uses ABB Codesys V2.3 programming software as the development environment, complies with the international standard of ICE61131-3, and can support statement list (IL), ladder diagram (LD), and function block (FBD). , Sequential Function Chart (SFC), Structured Text (ST), and Continuous Function Chart (CFC) six programming languages. The complete setup of the AC500 system can be completed, including all fieldbuses and interfaces, as well as comprehensive diagnostic functions, alarm handling, integrated visualization functions and open data interfaces.
Figure 6 FBP bus adapter configuration diagram in PS501 software
Figure 7 UMC22 monitoring interface (PS501 visualization function)
Excitation system ABB module PPC322 HIEE300900R0001
Excitation system ABB module PPC222A02
Excitation system ABB module PPB022DE01 HIEE300867R0001
Excitation system ABB module PPA322B HIEE300016R2 HIEE400235R1
Excitation system ABB module PPA322B HIEE300016R2 HIEE400235R1
Excitation system ABB module PP886H 3BSE069297R1
Excitation system ABB module PP885 3BSE069276R1
Excitation system ABB module PP885
Excitation system ABB module PP883 3BSE092979R1
Excitation system ABB module PP881 3BSE092978R1
Excitation system ABB module PP881
Excitation system ABB module PP877K
Excitation system ABB module PP877 3BSE069272R2
Excitation system ABB module pp877 3bse069272r2
Excitation system ABB module PP877
Excitation system ABB module PP875 3BSE092977R1
Excitation system ABB module PP875
Excitation system ABB module PP874
Excitation system ABB module PP871
Excitation system ABB module PP865A 3BSE042236R2
Excitation system ABB module PP865A 3BSE042236R2
Excitation system ABB module PP865A
Excitation system ABB module PP865 3BSE042236R1
Excitation system ABB module PP865
Excitation system ABB module PP846A 3BSE042238R2
Excitation system ABB module PP846A 3BSE042238R2
Excitation system ABB module PP846A
Excitation system ABB module PP846A
Excitation system ABB module PP846 3BSE042238R1
Excitation system ABB module PP846 3BSE042238R1
Excitation system ABB module PP846
Excitation system ABB module PP846
Excitation system ABB module PP845A
Excitation system ABB module PP845 3BSE042235R1
Excitation system ABB module PP845 3BSE042235R1
Excitation system ABB module PP845
Excitation system ABB module PP845
Excitation system ABB module PP845
Excitation system ABB module PP836A
Excitation system ABB module PP836 3BSE042237R1
Excitation system ABB module PP836
Excitation system ABB module PP836
Excitation system ABB module PP835A 3BSE042234R2
Excitation system ABB module PP835A
Excitation system ABB module PP835
Excitation system ABB module PP835
Excitation system ABB module PP835
Excitation system ABB module PP826A
Excitation system ABB module PP826 3BSE042244R1
Excitation system ABB module PP826
Excitation system ABB module PP825A 3BSE042240R3
Excitation system ABB module PP825A
Excitation system ABB module PP825 3BSE042240R1
Excitation system ABB module PP825
Excitation system ABB module PP820
Excitation system ABB module PP815
Excitation system ABB module PP325 3BSC6901104R1
Excitation system ABB module PP245
Excitation system ABB module PP245
Excitation system ABB module PP220 3BSC690099R2
Excitation system ABB module PNI800
Excitation system ABB module PNI800
Excitation system ABB module PNI800
Excitation system ABB module PMKHRMRLY12S01
Excitation system ABB module PMKHRMPBA2000A
Excitation system ABB module PMKHRMPBA10003
Excitation system ABB module PMKHRMPBA10001
Excitation system ABB module PMKHRMPBA10
Reviews
There are no reviews yet.