Description
5 Fieldbus network layer
5.1 mfb (master field bus) bus
The mfb bus is a field LAN bus and is connected between mp200, mp90, s400i/o, OPC (small control station) and the transmission system.
The mfb communication bus uses coaxial cables and twisted pairs. It connects the ci520/ci525/ci526 communication interface module and the
dstc452 modem. The ends of each twisted pair must be isolated, and the shielding layer of one end must be grounded. The communication of mfb
The rate is 375kb/s, its resistance is 75 ohms, and its hardware configuration is shown in Figure 3. The relevant system information of mfb is obtained from
the engineering station. The general order is time, information model, code, task number, sequence number, and data. It mainly displays the following states.
Code 20: cpu communication interface contact lost
Code 21: fatal hardware failure
Code 39: device/staTIon ok
Code 72: device/statIon address ok
Code 120: Process failure
Code-1: Execution error
Code -4: System error
Code -5: Minor system site error
Code-6: Communication failure
Code-9: Catastrophic bus failure
Code -10: Redundant cable interrupted
5.2 af100 (advant field)/mb90 (master bus) bus
The purpose of AF100/MB90 is to provide communication between multiple APC sites or between APC sites and ABB
industrial system equipment. MB90 supports two different types of communication,
data processing and information sending. The data set is dynamic data. Use To monitor and control a certain processing
process, this process uses service information for parameterization, program installation,
and diagnosis. AF100/MB90 is a high-performance regional bus capable of connecting up to 79 APC sites. The mb90 has a maximum length of 300
meters, and if equipped with appropriate signal cables and signal repeaters,
and long-distance configurations between individual transmission devices are available, up to 2000 meters. Technical characteristics of the bus
(1) Communication rate 1.5mbit/s
(2) Attenuation bus length <300m, proliferation delay <2000m
(3) Telegram length 2, 4, 6, 8,…32 bytes of user data.
(4) Identification code (telegraph code) range 1…4000
(5) Cycle time 2, 4, 8, 16, 32, 64, 128…2048 or 4096ms
af100/mb90 relies on a centralized bus manager. The bus manager functions are relatively complex and have many requirements.
For example, apc sites cannot be used as bus managers because they do not contain bus manager functions. To make communication between APCs via
AF100/MB90 possible, each solution (standalone and embedded) can be used to arrange the bus master of AF100/MB90. When the APCs start executing
their applications, the bus master must be operable, otherwise the data set function block within the apc branch will enter an error state when the locally
configured data set is not acknowledged by the bus manager within the specified time limit. , if the system has only apc site and no masterpiece is
connected to mb90 or ac450 and af100, an independent bus manager should be installed.
The communication between ABB DCS and the transmission system (such as acv700/dcv700) is realized by relying on the drrtra (drive trans mi t)
element and drrec (drive reciver) element shown in Figure 4 .
The drrtra (drive transmit) element is used to pass a given data set to the abb drive controller and select the control word and command word signal of the drive signal.
The definition of the control word and command word signal is given in the application drive software description. The drrtr element can generate different types of periodic
messages supported by the drive communication protocol. The destination of the signal is selected by the drive signal. The drrtr element can also write
parameters. In the normal phase, the overload of drrtr can be detected.
The drrec (drive reciver) element is used to receive signals and control word values from the abb drive controller. The definitions of these signals are given
in the application drive software description. The drrec element is just periodic information supported
by the drive connection protocol. The receiving data source is selected by determining the drive signal and signal index through the element input parameters.
The drrec element also has access to parameters, and overloads of drrec can be detected during configuration.
Excitation system ABB module AO845A-eA
Excitation system ABB module AO845A/3BSE045584R1
Excitation system ABB module AO845A
Excitation system ABB module AO845
Excitation system ABB module AO820-eA
Excitation system ABB module AO820
Excitation system ABB module AO820
Excitation system ABB module AO815-eA
Excitation system ABB module AO815
Excitation system ABB module AO815
Excitation system ABB module AO810V2-eA
Excitation system ABB module AO810V2 3BSE038415R1
Excitation system ABB module AO810V2 3BSE038415R1
Excitation system ABB module AO810V2
Excitation system ABB module AO810V2
Excitation system ABB module AO810 3BSE008522R1
Excitation system ABB module AO810
Excitation system ABB module AO801-eA
Excitation system ABB module AO801
Excitation system ABB module AO801
Excitation system ABB module AO801
Excitation system ABB module AO723F
Excitation system ABB module AO650 3BHT300051R1
Excitation system ABB module AO610
Excitation system ABB module AO610
Excitation system ABB module AO2000-LS25
Excitation system ABB module AO2000 LS25
Excitation system ABB module AO2000 LS25
Excitation system ABB module AO02
Excitation system ABB module ANIB-01 3HNA012322-001
Excitation system ABB module AM895F 3BDH000044R1
Excitation system ABB module AM895F
Excitation system ABB module AM811F-Z
Excitation system ABB module AM811F
Excitation system ABB module AM811F
Excitation system ABB module AM810F-Z
Excitation system ABB module AM60002B GNT0112010R0001
Excitation system ABB module AINT-14C
Excitation system ABB module AINT-14C
Excitation system ABB module AIM0006 2RCA021397A0001P
Excitation system ABB module AI950S
Excitation system ABB module AI950N
Excitation system ABB module AI950B
Excitation system ABB module AI931S
Excitation system ABB module AI931N
Excitation system ABB module AI931B
Excitation system ABB module AI930S
Excitation system ABB module AI930N
Excitation system ABB module AI930B
Excitation system ABB module AI920N
Excitation system ABB module AI910S
Excitation system ABB module AI910S
Excitation system ABB module AI910N
Excitation system ABB module AI910B
Excitation system ABB module AI895
Excitation system ABB module AI895
Excitation system ABB module AI893
Excitation system ABB module AI893
Excitation system ABB module AI890
Excitation system ABB module AI890
Excitation system ABB module AI880A
Excitation system ABB module AI845-eA
Excitation system ABB module AI845
Excitation system ABB module AI845
Excitation system ABB module AI845
Excitation system ABB module AI843-eA
Excitation system ABB module AI843
Excitation system ABB module AI843
Excitation system ABB module AI835A-eA
Excitation system ABB module AI835A
Excitation system ABB module AI835A
Excitation system ABB module AI835A
Excitation system ABB module AI835A
Excitation system ABB module AI835
Excitation system ABB module AI835
Excitation system ABB module AI830A-EA/3BSE040662R2
Excitation system ABB module AI830A-eA
Excitation system ABB module AI830A
Excitation system ABB module AI830A
Excitation system ABB module AI830A
Excitation system ABB module AI830A
Excitation system ABB module AI830
Reviews
There are no reviews yet.