Description
hardware flow control. It is an ideal choice in the field of industrial automation.
Caijing: Can we say that ABB is part of Made in China 2025?
Spiesshofer: Of course, we are a very important part. We were involved in coming up with this idea and we will be deeply involved in making it happen. Now we have
about 18,000 employees in China, with many manufacturing plants and large R&D centers. We also have a software center in China to develop artificial intelligence technology
used on robots. At present, China not only has a market for ABB, but also has an excellent team that I am very proud of.
Caijing: The current problem is that Made in China 2025 has posed a challenge to Europe and the United States. They believe that they need to pay close attention to
it. The current trade policy of the United States is also very targeted at Made in China 2025. How do you view this criticism?
Spiesshofer: I don’t want to comment too much on policy. China”s competitiveness has grown significantly over the past few decades, but the rest of the world has
not stood still. Take Europe”s technological development, for example. Europe is playing a leading role in the fourth industrial revolution.
I want to have a level playing field and give everyone a chance. It is true that China is an economic power, and there are other economic powers in the world.
The world is big enough to accommodate the friendly coexistence of all these forces.
The Industrial Internet is inseparable from industrial control
Caijing: Regarding digitization, there are two questions. Why digitization? How to digitize?
Spiesshofer: People have been benefiting from technologies that improve productivity. Through digitalization, we can improve productivity very well. We introduce a closed
loop of “perception, analysis, and action” to sense through digital technologies such as sensors , communication devices, and connected devices. We learn the operation status
of assets through sensor technology, upload it to the cloud, and summarize the information. After we have the information, we need to analyze the information. AI technology plays
an important role in this process, that is, intelligent algorithms for analyzing data. Then comes the action part, where you need to get into the control loop of an
industrial process or maintenance plan to make it work. Like AI, we should not be afraid of digitalization, but rather see it as an opportunity to create prosperity and wealth.
Caijing: Regarding the Industrial Internet, GE, which proposed this concept, has changed its CEO and its performance is poor. Does this mean that its development is
not going smoothly? How do you see the future of the Industrial Internet?
Spiesshofer: If used well, the industrial Internet can be very effective. To review what I said: perception, analysis and action are required. Our strategy is different from
GE”s strategy. They stop after sensing and analyzing, while we still have an action phase. Through our control system, the Industrial Internet is connected to the control loop
through intelligent algorithms, which can create a lot of value for customers.
ABB is one of the two major industrial control technology companies in the world. Siemens is the leader in the discrete industry. We are second only to Siemens.
In the process industry, ABB ranks first and Siemens second. This is the biggest difference between ABB and GE: GE does not control the circulation or has no control
ability. It is like you are a doctor. You only diagnose high fever and give the patient your suggestions, but ABB not only gives suggestions, but also helps patients implement the suggestions. .
Caijing: You also mentioned the concept of global energy internet. Is this a future concept or something that is already happening? What is its value?
Spiesshofer: The energy challenge facing people today is how to provide predictable, high-quality, low-carbon baseload energy.
There are different ways to achieve this, bringing together different renewable and conventional energy sources, plus nuclear power. All of the previously
mentioned energy sources can also be connected together through a globally interconnected power grid. We must also incorporate active demand-side
management and intelligent demand-side optimization to achieve peak-cutting effects through demand-side model optimization.
Overall, there will be a globally interconnected power system in the future that will operate completely differently with demand-side
dynamics ranging from long distances all the way to local. The roof of your house is equipped with solar energy. It may be a power station in the
morning, a power user in the afternoon, and it may be an energy storage power station in the evening because you are charging your electric car. Optimizing
all of this is what I call the Internet of Power, and that”s what we”re working on.
https://www.xmamazon.com
https://www.xmamazon.com
https://www.plcdcs.com/
www.module-plc.com/
https://www.ymgk.com
FBM207C RH917GY FOXBORO Processor module
FBM219 RH916RH FOXBORO Controller module
FBM237 RH914XS FOXBORO Analog quantity expansion module
FCP270 P0917YZ FOXBORO Digital output module
RH924YF FOXBORO FCP280 bottom plate
E69F-TI2-JRS FOXBORO Pneumatic signal converter
FBM233 P0926GX FOXBORO Analog output module
RH924UQ FOXBORO Communication template
FCP280 RH924YA FOXBORO Communication interface card component
P0916FL FOXBORO DCS controller
P0904HA FOXBORO Digital output module
FBM230 P0926GU FOXBORO Control module spare parts
FCP270 P0917YZ FOXBORO Channel digital output
FBM232 P0926GW FOXBORO Digital quantity module
P0926GH FOXBORO Channel digital input
P0912XX FOXBORO Channel analog input
P0916PW FOXBORO Input output module
FBM230 FOXBORO Communication function board
SST-SR4-CLX-RLL SST Input/output module
TK-IOLI01 HONEYWELL Original module
TK-FPDXX2 HONEYWELL system PLC module
TK-FTEB01 HONEYWELL Hardware Configuration
TC-XXXXX1 HONEYWELL Input module
TC-PRS021 HONEYWELL digital input module
TC-PRR021 HONEYWELL Power module
TC-PPD011 HONEYWELL System spare parts
TC-ODK161 HONEYWELL Ethernet module
TC-FPCXX2 HONEYWELL Word size module
TC-CCR014 HONEYWELL I/O/DO module
SC-UCMX01 51307195-175 HONEYWELL I/O/DO module
SC-TCMX01 51307198-175 Honeywell Power module
SC-PCMX01 51307195-175 HONEYWELL Power electronic module
51404223-001 Honeywell Analog input submodule
51404170-175 Honeywell DCS power module
51404203-002 HONEYWELL I/O modules
51403776-100 Honeywell pulse amplifier board
51403645-100 HONEYWELL Chopper control board
51403519-160 HONEYWELL Analog quantity input
51402455-100 HONEYWELL End to end module
51401583-100 EPNI HONEYWELL Control system
51401437-301 HONEYWELL Redundant controller
51401286-100 HONEYWELL Communication control panel
51400700-100 HONEYWELL Channel digital output module
51306673-100 EPNI HONEYWELL Mainboard of the I/O module
51305896-200 NIM MODEM HONEYWELL Analog interface board
Reviews
There are no reviews yet.