Description
3BHE032285R0102 XVC772A102 Модуль ввода / вывода ABB
Double-decker train uses ABB traction transformer for the first time
Rapid urbanization has brought about problems such as traffic congestion, air pollution and population expansion, forcing railway operators and infrastructure providers
to transport more passengers on already busy rail transit systems. One solution to this outstanding contradiction is to increase the passenger capacity of existing
transportation lines.
On July 22, 2011, ABB , the world”s leading power and automation technology group, recently announced that Bombardier designed and manufactured the world”s
first traction transformer that can be installed on the top of the locomotive for its new generation double-deck EMU train . This train can be used in commuter, regional
and intercity rail transit. The use of double-decker trains is a good way to increase passenger capacity. This type of train has the best car seat ratio planning, and the improved acceleration performance
of the train also effectively shortens the travel time between stations and expands the coverage of train services.
The latest Bombardier double-decker trains have an ABB traction transformer installed on the top. They adopt an extra-wide body and better seat planning. The
number of seats per meter of the body ranges from 5 to 5.8, providing more space for passengers. Compared with similar models currently on the market, Bombardier”s
new trains can carry 35% more passengers.
ABB and Bombardier have a long-standing relationship in the field of traction equipment for regional commuter trains, high-speed trains and railway locomotives.
The traction transformer converts the grid voltage from the power grid above the train into the lower voltage required by the train”s traction system, and delivers it to the train”s
driving equipment, as well as lighting, heating, ventilation systems, on-board LCD displays, information systems and other electrical system .
In order to ensure the continuity of railway transportation and the effectiveness and reliability of the highest level of instant power supply, ABB specially designed
traction transformers for OMNEO trains. Compared with the traction transformer on the single-layer SP AC IUM* EMU train provided by Bombardier for the Francilien line
in the Paris region of France , the power supply capacity of the new transformer is increased by 25%. To save space, the roof-mounted traction system combines the
separate cooling systems for the converter and transformer. This design reduces the number of fans while reducing cost
and equipment weight. In addition, in order to save space and facilitate equipment maintenance and control, the transformer will be installed directly on the top channel
of the vehicle.
Bombardier worked with ABB to complete the design work, and the cabin baffles were installed on the inverter , cooling system and transformer to ensure that these
components fit perfectly into the arc-shaped roof and are difficult to see from the outside after installation. In order to solve the problem of the high center of gravity of the
double-decker train carriage, the transformer has also been designed accordingly to evenly distribute the weight of the equipment.
Swiss ABB will build the largest solar power plant in Northern Europe
Swiss power and automation technology group ABB announced on August 11 that it has built the largest solar power station in Northern Europe at its
low-voltage AC drive plant in Finland . The total investment in the entire solar power station project is approximately 500,000 euros, part of which comes from
the Finnish government. renewable energy investment fund.
ABB Finland”s low-voltage AC transmission plant is located in Helsinki. This solar power station is located on the roof of the factory and has a power
of 181 kilowatts. The solar power generated is mainly used to charge the factory”s forklift truck batteries and reduce the peak load of the factory”s electricity consumption.
Antti Suontausta, Senior Vice President of ABB”s low-voltage AC drives business, said: “This solar power generation system fully demonstrates the
benefits of distributed power generation near power consumption areas. Solar power generation can bring high added value to users, especially for
commercial and industrial applications . For buildings, solar power generation can reduce the building’s peak power load.”
Finland”s sunshine is not very abundant, but this solar power station can take full advantage of the region”s long sunshine hours in summer. It is
expected to generate 160,000 kilowatt hours of electricity per year, which is equivalent to the annual use of 30 local households that do not use electric
heating equipment. power. This solar power will be directly integrated into the factory power grid to charge the forklift trucks in the factory, and the excess
power can also be used by other equipment.
The solar power station uses ABB”s latest string inverters and central inverters, which are designed and produced by ABB”s transmission plant in
Helsinki. This is their first application in Finland. ABB solar inverters are mainly used to convert DC power produced by solar panels into high-quality
AC power and integrate it into the power grid.
5SHX1445H0002 IGCT SCR produced
3HNA024871-001 Robot control unit
1C31205G01 PLC system module control card
3ASC25H209 Real-time data acquisition
3BHL000986P0006 inverter module
PM510V16 3BSE008358R1 Power management module
IC693CPU350-BC controller Modular design
350040M 176449-01 Analog input/output module
350042M 176449-02 High precision measurement
3500/15 133292-01 security controller
3500/25 184684-01 security controller
136188-01 PLC automation spare parts
RH924UQ Fiber optic network adapter
3500/92 136180-01 Communication gateway module
133300-01 Power input module
5417-1105 controller Communication function
531X301DCCAFG2 Modular controller
VMIVME 4140-000 CPU board VME bus
S70302-NANANA Servo amplifier
VMIVME 7459-112 Multifunctional memory module
VMIVME 2540-300 Motor detection module
131151-01 Channel relay output module
D201925 High precision hydraulic valve
CTB810 HN800 motor control medium-voltage
HDS03.2-W075N-HS12-01-FW R911190008 system
PM3398B-6P-1-3P-E 80026-172-23 coupler
58914444 NDPI-02 Series multilevel type
A413600 Crystalline silicon solar cells
A413331 ball wire pair High precision
D201471 Digital output module
D685EF-00 Power supply equipment
FV223-M2 Switch input module relay
D201466 input module Temperature monitoring
D201832 microcontroller Analog input module
D201190 input/output module
63025-01D Servo driver High performance
LDMUI-01 3AFE61320946P0001 Analog input module
PPC905AE101 3BHE014070R0101 Power module
XVC770BE101 3BHE021083R0101 board module
HIEE401782R0001 LTC391AE01 transformer
XVC768AE101 3BHB007211R0101 interface module
LDMTR-01 3BHB007445P0001 Optical coupler
UFC789AE101 3BHE014023R0101 Circuit breaker
3BHE024577R010 PPC907BE Reverse module
UAC383AE01 HIEE300890R0001 controller
DDC779BE02 3BHE006805R0002 controller
UFC762AE101 3BHE006412R0101 circuit breaker
XVC724BE 3BHE009017R0102 Monitoring system
XVC767AE102 3BHB007209R0102 Driving module
UFC760BE142 3BHE004573R0142 Circuit breaker
UFC760BE143 3BHE004573R0143 Circuit breaker
SW-1200063 Circuit breaker module
ACS5000 3BHB014024R0010 brushless DC motor driver manufactured
3BHL000606P0002 Modular controller
NMBA-01 3BHL000510P0003 Optical fiber network
D201134 Safety controller industrial control
Reviews
There are no reviews yet.