Description
3BHE021083R0101 Использование параметров ABB
The most fundamental reason for distinguishing these two motor types is that the
design of the air gap magnetic field is different. So the following differences arise
The back EMF waveform is different:
BLDC: Approximate trapezoidal wave (ideal state);
PMSM: sine wave (ideal state);
The three-phase current waveforms are different:
BLDC: Approximate square wave or trapezoidal wave (ideal state);
PMSM: sine wave (ideal state);
Differences in control systems:
BLDC: usually includes position controller, speed controller and current (torque) controller;
PMSM: Different control strategies will have different control systems;
Controls are different:
BLDC: 120-degree square wave current, using PWM control;
PMSM: Positive Xuan wave current, controlled by SPWM SVPWM.
However, in actual control, brushless DC can also be controlled by FOC, and permanent magnet
synchronous motors can also be controlled by square waves.
Just like the controllers of electric vehicles, I have disassembled and studied three or four. The interfaces are
all the same, the control chips are different, and of course the control algorithms are also different. Electric vehicles
controlled by sine waves have very low sound when starting and running, and there is no jitter during operation;
but electric vehicles controlled by square waves have very obvious sounds, and the jitter during operation can also
be felt. The judder is due to definite torque ripples.
Motors controlled by square waves have higher power efficiency, because motors controlled by sine waves have a lower effective voltage.
4. Control technology of permanent magnet synchronous motor
Permanent magnet synchronous motors and brushless DC motors can be operated using the same control method.
KUC720AE01 3BHB003431R0001 Controller master unit
07KT97 GJR5253000R4270 ABB System board card
07KT98C GJR5253100R028 ABB Control module card key
KUC711AE01 3BHB004661R0001Input control panel
07 KT 98 GJR5253100R0278 ABB controller
PFTL101B 5.0KN 3BSE004191R1 sensor
PFTL101B 5.0KN Cross sectional measurement Pressure magnetic indenter
PFTL101A 1.0KN ABB controller
PFTL101A 1.0KN 3BSE004166R1 ABB Tension control unit
3HNM07485-1/07 ABB Multi-function controller
3HNM07686-1 3HNM07485-1/07 ABB Robot axis calculation board
SYN 5201 A-Z ABB devices and systems
MVME172-263/260 SCSI & Ethernet Interface
MVME172-263/260 DCS system module
D674A906U01 ABB Electromagnetic Flowmeter
MSK050C-0300-NN-M1-UG1-NNNN motor
USIO21 TOSHIBA DC Signal Converter
USIO21 TOSHIBA industry switch
PM3326B-6-1-2-E Medium voltage circuit board
PM3326B-6-1-2-E PIONEER MAGNETICS power controller
KJ2005X1-MQ1 Analog output module
VE3008 Analog output module
PFRL101B radial load cell
PFEA112 adds Profibus-DP fieldbus communication function on the basis of PFEA111
PFEA111 tension controller with two load cells
PFBL141B/C vertical force testing unit
PFEA101 constant tension closed loop control
CE3008 Analog output module
PFVL141R ring load cell PFVL141R
PXAH401 Millmate Operator Unit 400
PFVA401 rolling force controller
CE3008 Emerson Digital output module
PFVL141V rectangular load cell
PFTL201DE pillow block tension meter horizontal load cell
PFTL201D horizontal load cell for pillow block tension meter
PFTL201CE horizontal load cell for pillow block tension meter
PFTL 201C horizontal load cell for pillow block tension meter
Reviews
There are no reviews yet.