Description
3BHE003604R0102 UFC765AE102 Контроллер ABB
Швейцария, и входит в десятку крупнейших швейцарских транснациональных корпораций.3BHE003604R0102 UFC765AE102
химическая, нефтехимическая, фармацевтическая, целлюлозно – бумажная, нефтепереработка; Оборудование приборов: электронные приборы, телевизоры и оборудование для передачи данных,
генераторы, гидротехнические сооружения; Каналы связи: интегрированные системы, системы сбора и распространения;3BHE003604R0102 UFC765AE102Строительная промышленность: коммерческое и промышленное строительство.
3.2 Machine learning
As the functionality of distributed computing tools such as Spark MLLib (http://spark.apache.org/mllib) and SparkR (http://spark.apache
.org/docs/latest/index.html) increases, it becomes It is easier to implement distributed and online machine learning models, such as support
vector machines, gradient boosting trees and decision trees for large amounts of data. Test the impact of different machine parameters and process
measurements on overall product quality, from correlation analysis to analysis of variance and chi-square hypothesis testing to help determine the impact of individual
measurements on product quality. This design trains some classification and regression
models that can distinguish parts that pass quality control from parts that do not. The trained models can be used to infer decision rules. According to the highest purity rule,
purity is defined as Nb/N, where N is the number of products that satisfy the rule and Nb is the total number of defective or bad parts that satisfy the rule.
Although these models can identify linear and nonlinear relationships between variables, they do not represent causal relationships. Causality is critical to
determining the true root cause, using Bayesian causal models to infer causality across all data.
3.3 Visualization
A visualization platform for collecting big data is crucial. The main challenge faced by engineers is not having a clear and comprehensive overview of the complete manufacturing
process. Such an overview will help them make decisions and assess their status before any adverse events occur. Descriptive analytics uses tools such as
Tableau (www.tableau.com) and Microsoft BI (https://powerbi.microsoft.com/en-us) to help achieve this. Descriptive analysis includes many views such as
histograms, bivariate plots, and correlation plots. In addition to visual statistical descriptions,
a clear visual interface should be provided for all predictive models. All measurements affecting specific quality parameters can be visualized and the data
on the backend can be filtered by time.
Excitation system ABB module IMASO11
Excitation system ABB module IMASO01
Excitation system ABB module IMASM04
Excitation system ABB module IMASM03
Excitation system ABB module IMASM02S
Excitation system ABB module IMASM02
Excitation system ABB module IMASM01
Excitation system ABB module IMASI23
Excitation system ABB module IMASI23
Excitation system ABB module IMASI23
Excitation system ABB module IMASI23
Excitation system ABB module IMASI13
Excitation system ABB module IMASI13
Excitation system ABB module IMASI03
Excitation system ABB module IMASI02S
Excitation system ABB module IMASI02
Excitation system ABB module IMASI02
Excitation system ABB module IMAS113
Excitation system ABB module IMAS011
Excitation system ABB module IMAS011
Excitation system ABB module IMAS001
Excitation system ABB module IMAOM01
Excitation system ABB module IMAMM03
Excitation system ABB module IMAMI01
Excitation system ABB module IKTU02-3
Excitation system ABB module IKTU01-6.6
Excitation system ABB module IKLS01-2.2
Excitation system ABB module IKLM01-5
Excitation system ABB module IKLM01-3
Excitation system ABB module IKAS01-6.4
Excitation system ABB module IISACO1
Excitation system ABB module IISAC01
Excitation system ABB module IISAC01
Excitation system ABB module IIPLM01
Excitation system ABB module IIMTM01
Excitation system ABB module IIMSM01
Excitation system ABB module IIMRM02
Excitation system ABB module IIMRM01
Excitation system ABB module IIMPM02
Excitation system ABB module IIMPM01
Excitation system ABB module IIMLM01
Excitation system ABB module IIMKM02A
Excitation system ABB module IIMKM02
Excitation system ABB module IIMKM01A
Excitation system ABB module IIMKM01
Excitation system ABB module IIMGC04
Excitation system ABB module IIMGC03
Excitation system ABB module IIMGC02
Excitation system ABB module IIMGC01
Excitation system ABB module IIMCP02
Excitation system ABB module IIMCP01
Excitation system ABB module IIMCL01
Excitation system ABB module IIEDI01
Excitation system ABB module IIAMS01
Excitation system ABB module IIADP02
Excitation system ABB module IIADP01
Excitation system ABB module IEPWM02
Excitation system ABB module IEPU02
Excitation system ABB module IEPRD01
Excitation system ABB module IEPMU01
Excitation system ABB module IEPEP07
Excitation system ABB module IEPEP04
Excitation system ABB module IEPEP03
Excitation system ABB module IEPEP01
Excitation system ABB module IEPDS02
Excitation system ABB module IEPDS01
Excitation system ABB module IEPDP01
Excitation system ABB module IEPBM01
Excitation system ABB module IEPAS02
Excitation system ABB module IEPAS02
Excitation system ABB module IEPAS01
Excitation system ABB module IEPAS01
Excitation system ABB module IEPAF02
Excitation system ABB module IEPAF01
Excitation system ABB module IEMMU22
Reviews
There are no reviews yet.