Description
251-015N5-140/30-2100 Модуль ввода / вывода ABB
Швейцария, и входит в десятку крупнейших швейцарских транснациональных корпораций.251-015N5-140/30-2100
химическая, нефтехимическая, фармацевтическая, целлюлозно – бумажная, нефтепереработка; Оборудование приборов: электронные приборы, телевизоры и оборудование для передачи данных,
генераторы, гидротехнические сооружения; Каналы связи: интегрированные системы, системы сбора и распространения;251-015N5-140/30-2100Строительная промышленность: коммерческое и промышленное строительство.
(5) Perform predictive maintenance, analyze machine operating conditions, determine the main
causes of failures, and predict component failures to avoid unplanned downtime.
Traditional quality improvement programs include Six Sigma, Deming Cycle, Total Quality Management (TQM), and Dorian Scheinin’s
Statistical Engineering (SE) [6]. Methods developed in the 1980s and 1990s are typically applied to small amounts
of data and find univariate relationships between participating factors. The use of the MapReduce paradigm to simplify data processing in
large data sets and its further development have led to the mainstream proliferation of big data analytics [7]. Along with the development of
machine learning technology, the development of big data analytics has provided a series of new tools that can be applied to manufacturing
analysis. These capabilities include the ability to analyze gigabytes of data in batch and streaming modes, the ability to find complex multivariate
nonlinear relationships among many variables, and machine learning algorithms that separate causation from correlation.
Millions of parts are produced on production lines, and data on thousands of process and quality measurements are collected for them, which is
important for improving quality and reducing costs. Design of experiments (DoE), which repeatedly explores thousands of causes through
controlled experiments, is often too time-consuming and costly. Manufacturing experts rely on their domain knowledge to detect key
factors that may affect quality and then run
DoEs based on these factors. Advances in big data analytics and machine learning enable the detection of critical factors that effectively
impact quality and yield. This, combined with domain knowledge, enables rapid detection of root causes of failures. However,
there are some unique data science challenges in manufacturing.
(1) Unequal costs of false alarms and false negatives. When calculating accuracy, it must be recognized that false alarms
and false negatives may have unequal costs. Suppose a false negative is a bad part/instance that was wrongly predicted to
be good. Additionally, assume that a false alarm is a good part that was incorrectly predicted as bad. Assuming further that
the parts produced are safety critical, incorrectly predicting that bad parts are good (false negatives) can put human lives
at risk. Therefore, false negatives can be much more costly than false alarms. This trade-off needs to be considered when
translating business goals into technical goals and candidate evaluation methods.
W24MT25 ACOPIAN AC DC Single output
HIMA F3330 984333002 8 fold Output module F 3330
IC200PWR102E Expansion power module
1C31227G02 Analog input (voltage) module
1756-L55M12 Processor components
JUSP-NS500 Yaskawa Drive
MSK040C-0600-NN-M2-UG0-NNNN servo motor
IC200UEM001 Ethernet optional module
A06B-6112-H026#H550 Spindle amplifier module
IS215UCCCM04A Mark VI IS200 CPCI 3U Compact PCI
IS215UCVBG1A Mark VI IS200 Ethernet communication keyboard
IS215UCCAM03A Mark VI IS200 UCCA Processor
IS215UCCAH3A controller board Mark VI IS20
IS215UCVEM09B Ethernet connection circuit board GE
AIM0006 2RCA021397A0001F Control Board module
IS210AEBIH3BEC GE Gas turbine card module
A6140 9199-00058 Monitoring module emerson
A6824R 9199-00098-13 ENERSON Vibration module
A2H124-24FX P0973BJ Industrial switch
5SHY3545L0016 3BHB020720R0002 3BHE019719R0101 GVC736BE101
IS215UCVEM01A IS215UCVEH2AF VMIVME+7614-133 350-017614-133 E
TRICONEX MP3009X/TCM 4355X motherboard
REF615C_C HCFFAEAGANB2BAN1XC Feeder protection and measurement and control device
REXRTOH VT-MVTW-1-16/D Communication board
NI PCI-5421 Waveform Generator Device
IS215UCVEM08B GE Mark VI IS200 printed circuit board
ABB 07AC91 GJR5252300R0101 Analog I/O module
RAMIX PMC237C-008EMI Expansion Module for VME Systems
5SHY4045L0001 3BHB018162R0001 3BHE009681R0101 GVC750BE101
3500/53 133388-01 BENTLY Overspeed Detection Module
VMIVME-7750 VMIVME-7750-760000 350-027750-760000 N
GE F650-G-N-A-B-F-2-G-1-HI-C-E Relay protection device
ABB P4LQA HENF209736R0003 16 channel digital output module
SAT CM3142-01-03 CX3147-04 Interface module
SAT CM3141-02-03 CX3149-05 8-channel digital input
SAT RM3141-01-02 CM3141-01-02 Servo control system
Allen-Bradley 1756-IF16 ControlLogix Analog Input Module, Current/Voltage, 16-Ch
ABB PCD231B101 3BHE025541R0101 Excitation system control unit
DEIF DU-2/MKIII ROTECTION AND POWER MANAGEMENT
FENA-11 ABB Ethernet adapter
VMIVME-7698 VMIVME-7698-140 350-017698-140 A
REF615C_C HCFFAEAGANB2BAN1XC Motor protection device
VMIVME-1110 High voltage digital input board VMIVME-1110-117
VMIVME-5550 Reflects the memory interface board module VMIVME-5550-310
VMIVME-2534 Digital input/output board VMIVME-2534-020
Reviews
There are no reviews yet.