Description
hardware flow control. It is an ideal choice in the field of industrial automation.
In June 2018, Yaskawa (China) Robot Co., Ltd. held a completion ceremony for its third factory in Changzhou. In October, Japan”s FANUC Robotics Chongqing base
project started construction and is expected to be completed in the first half of 2019. After reaching capacity, it will achieve an annual output value of more than 200
million yuan. Local areas compete for new opportunities in high-end manufacturing
From government procurement and local industrial policies, we can see that all regions are competing for new opportunities in digital and intelligent transformation,
and high-end manufacturing, represented by robots, has become the focus of local efforts.
At the CIIE, robot companies received intensive orders. Analysts from the 21st Century Economic Research Institute found that high-end manufacturing, smart
and high-end equipment, new energy vehicles, etc. have become the focus of procurement in the procurement lists of multiple provincial trading groups.
Official data shows that of the US$57.83 billion in intended turnover at the CIIE, the smart and high-end equipment exhibition area had the highest turnover, reaching
US$16.46 billion. Some exhibitors at the exhibition said that they had never received so many large customers from state-owned enterprises and local governments in
one day, and the total order volume far exceeded expectations.
The representative city that focuses on high-end manufacturing is Shanghai, where the service industry accounts for more than 70%. In the “Thirteenth Five-Year
Plan for the Transformation and Upgrading of Shanghai”s Manufacturing Industry” released at the end of 2016, high-end manufacturing is regarded as an important
breakthrough for industrial transformation.
In the past two years, Shanghai”s investment promotion in the field of high-end manufacturing has also been fruitful. A number of major projects such as robots,
new energy vehicles, large aircraft, and integrated circuits have been launched one after another. Take robots as an example. As a carrier of intelligent manufacturing,
Shanghai has gathered domestic and foreign leading robot companies including ABB, KUKA, SIASUN and Xinstar. Currently, robot output accounts for more than 20% of the country”s total.
In the first half of 2018, Shanghai”s non-state-owned economic and industrial investment increased by 32.9% year-on-year, with major projects distributed in various
industries such as auto parts, clothing, and robots. High-end manufacturing projects introduced in Shanghai this year include the Tesla Gigafactory, which plans to
produce 500,000 pure electric vehicles per year , and the
ABB Robotics Gigafactory, which plans to produce 100,000 robots per year. The latter will realize “making robots with robots”. After being put into production in 2020,
the total output of high-end industrial robots made in Shanghai will double.
As a manufacturing hub in the central and western regions, Chongqing is also making continuous efforts in high-end manufacturing. In 2018, Chongqing held the first
China Smart Expo, focusing on smart manufacturing and hoping to build a project exchange and docking
platform in the field of smart manufacturing. In November, Chongqing released “Nine Policy Measures to Reduce the Cost of Manufacturing Enterprises”, which will
reduce the cost of manufacturing enterprises by more than 30 billion yuan each year. Chongqing also supports key enterprises to increase their efforts in intelligent
transformation of equipment, with a maximum subsidy of 5 million yuan for a single project.
In terms of project investment, three of the four major robot families have settled in Chongqing to invest, including ABB from Switzerland, KUKA from Germany, and
FANUC from Japan. At present, there are more than 300 robot companies in Chongqing, and the number of industrial robot companies has exceeded 120.
A mature robot market should have 70 robots per 10,000 jobs. Countries with relatively developed robot applications, such as South Korea, Germany, Japan, etc.,
already have 300 robots per 10,000 people, while China is far lower than the previous one. numbers, let alone compared to developed countries. In 2016, China”s
“Robot Industry Development Plan (2016-2020)” proposed that the density of industrial robots (the number of industrial robots used per 10,000 workers) should reach more than 150 by 2020.
How to support high-end industries locally
Analysts from the 21st Century Economic Research Institute combed through the high-end manufacturing support policies in Shanghai, Chongqing,
Shandong and other places and found that most of them focus on industrial land, fiscal and tax support, etc.
Shanghai has proposed seven safeguard measures: reforming the industrial system and mechanism, coordinating industrial land use,
increasing fiscal and taxation support, promoting the integration of industry and finance, building a talent system, implementing an open development
strategy, and improving the planning and implementation system. Jiangsu implements a high-end equipment research and development catch-up project,
focusing on the development of 13 fields such as electronic industry equipment and intelligent complete sets of equipment.
Zhejiang implements special projects for equipment with major shortcomings, focusing on ten major fields such as rail transit, robots and
intelligent manufacturing equipment.
https://www.xmamazon.com
https://www.xmamazon.com
https://www.plcdcs.com/
www.module-plc.com/
https://www.ymgk.com
05704-A-0121 honeywell Switch quantity input module
05701-A-0550 HONEYWELL Analog output module
05701-A-0361 HONEYWELL Power control panel
05701-A-0511 honeywell Analog input module
05701-A-0351 honeywell Modem module
05701-A-0330 HONEYWELL PLC/DCS module
05701-A-0326 honeywell Analyzing Field Interface Cards
05701-A-0325 HONEYWELL DC input card
05701-A-0302 HONEYWELL Control card
05701-A-0301 HONEYWELL Control module
TG-13 8516-038 Woodward Steam Turbine mechanical hydraulic governor
WOODWARD 8440-2145 Steam turbine governor
9907-838 Woodward Steam Turbine digital governor
9907-252 WOODWARD Digital speed governor
9907-167 WOODWARD Digital controller
WOODWARD 9907-164 Turbine expander module
9907-165 WOODWARD Speed regulating controller
WOODWARD 9907-164 Turbine expander module
9907-162 WOODWARD CNC system key panel
9907-1200 WOODWARD current pressure converter
9907-149 WOODWARD High speed counting module
9907-1200 WOODWARD current pressure converter
9905-973 WOODWARD Adjusting control system
8701-758 5601-1126 WOODWARD Electronic speed control
8446-1019 woodward Governor control module
8402-319 8402-119 WOODWARD actuator
8440-1713/D WOODWARD controller
WOODWARD 8237-1006 505 Steam turbine governor
WOODWARD 8200-1300 Steam Turbine governor 505 servo system
5501-471 WOODWARD Driver program module
WOODWARD 5501-470 Module card governor
5501-467 woodward Inductance inductor
WOODWARD 5466-409 Pressure governor
SR469-P5-LO-A20-E GE Multi-wire SR469 relay
5466-316 WOODWARD I/O of the proportional actuator
5464-414 WOODWARD Digital speed sensor
5466-258 woodward Speed control
140XBP01600 Network communication card
140XBP01000 racks backplanes
140XBE10000 Schneider I/O unit module
140SDI95300S SCHNEIDER safety dc discrete input module
140SDO95300S Secure DC discrete output module
140SAI94000S SCHNEIDER Analog safety input module
140NWM10000 Ethernet TCP/IP module
140NRP95400 SCHNEIDER analog input module
140NRP95400 SCHNEIDER flow controller source
140NRP31200C SCHNEIDER DCS control system
140NOM21100 2-channel pulse input module
140MSB10100 Input/Output module
140NOE77101 Schneider Digital input card
Reviews
There are no reviews yet.