Description
hardware flow control. It is an ideal choice in the field of industrial automation.
Practical application of ABB industrial information control system 800xA in main shaft hoist control
introduction
The mine hoist is an important transportation equipment for mining enterprises. Its main function is to transport the ore,
personnel or equipment that need to be transported to the destination by the lifting container. Therefore, it plays a very
important role in the mining production process. Usually the mine hoist control system consists of a driving part and a
control part. The working mechanism
of the driving part is: the motor unit drives the mechanical hoisting device, and the frequency converter or other types
of hoisting control systems drive the motor unit: the working mechanism of the control part is: Each component of the
hoist is coordinated and controlled by the
Distributed Control System (DCS). In addition to completing basic process control, it can also integrate intelligent instruments,
intelligent transmission and motor control, and even production management and safety systems into one operation and engineering environment
middle. Therefore, the mine hoist requires a control system with high performance, high reliability, and high integration.
1ABB800xA system and AC800M controller introduction
1.1ABB800xA system introduction
The 800xA system is an industrial information control system launched by ABB. The core of its architecture is
object-oriented (ObjectOriented) technology. Due to the adoption of ABB”s unique Aspect0object concept,
enterprise-level information access, object navigation and access can become standardized and simple.
In order to provide a unified information platform for enterprise managers and technical personnel, the 800xA system
provides a base platform (BasePlatform), which relatively separates the process control part and production control
management and organically combines them together. As shown in Figure 1, the middle part is the basic platform, the upper part is the production control
management part, and the lower part is the process control part. The basic platform provides standard interfaces for
these two parts for data exchange.
1.2 Introduction to ABBAC800M controller and its programming configuration tools
AC800M controller is ABB”s latest controller series, which includes a series of processors from PM851 to PM865.
The AC800M controller itself has a pair of redundant TCP/IP interfaces. It can use the MMs protocol to communicate
with other control devices and 800xA operator stations through Ethernet. It can also use the Modbus protocol and
Point-Point protocol through 2 serial ports. communication. The programming and configuration tool of AC800M is
ControlBuilderM,
referred to as CBM. It supports standard ladder diagram, function block language, text description
language and assembly language to write control logic.
2. Improve the design and implementation of control system functions
2.1 Implementation of elevator operating speed curve
One of the main tasks of the lifting control system is to control the lifting motor to operate according to the speed-position
curve given by the design, so that the lifting container passes through the acceleration section, the uniform speed
section and the deceleration section successively, and stops accurately after completing the specified lifting distance
. somewhere in the wellbore. In order to realize the function of precise position calculation, the designed
elevator control system must be able to perform high-precision position calculation based on the photoelectric encoder
connected to the main shaft of the elevator drum. The
calculation formula is as follows:
In the formula, s is the actual position value of the elevator: sp is the distance corresponding to two consecutive encoder
pulses: AN is the difference between the encoder count value at the reference position and the current position (signed variable):
s0 is the reference position value.
The encoder counts are distributed according to the circumference of the drum. After the number of pulses Np generated
by the encoder rotation is known, the diameter of the circumference of the centerline of the wire rope wrapped around the
drum must be accurately known, so that it can be calculated according to formula (2) The distance sp corresponding to the two encoder pulses:
In the formula, D is the circumferential diameter of the centerline of the wire rope: Np is the number of pulses for one revolution of the known encoder.
But in formula (2), there is a value D that keeps getting smaller as the system runs. This is because the wire rope
used in the elevator is wrapped around the drum, and there is a lining between the wire rope and the drum that increases
friction. This liner will become thinner and thinner as the system continues to wear and tear, causing the diameter of the
circle formed by the center line of
the steel wire rope to gradually become smaller. When the pad wears to a certain extent, it will cause a large position
calculation error. In order to solve the above problems, the two parking position switches in the shaft are used to correct the drum diameter, because the
distance between the two parking positions can be obtained through actual measurement with high accuracy. During the
actual operation, record the encoder count values at the two parking positions respectively. According to formula (3),
the actual correction value of sp can be calculated:
In the formula, sd is the distance between two parking positions: Abs is the absolute value operation: N is the
encoder count value when there are two parking positions.
In this way, the initial sp value is first set according to the given design parameter value, and then the value is
corrected according to the actual operating conditions, which can effectively ensure the accuracy of position
calculation. At the same time, sp” can also be substituted into formula (2), and the D value can be obtained in turn,
which can be used as a basis for judging whether the liner is seriously worn.
After obtaining the elevator position value, the speed control curve can be calculated according to formula (4):
https://www.xmamazon.com
https://www.xmamazon.com
https://www.plcdcs.com/
www.module-plc.com/
https://www.ymgk.com
ACC-5595-208 GE DCS card module
3BDH000320R02 ABB Input control panel
LD800HSE Input output module
LD800HSE 3BDH000320R02 ABB Numerical control module
A4H124-24FX P0973JN ENTERASYS Gateway module
A4H124-24FX ENTERASYS Industrial switch
A4H124-24FX P0973JN Power supply drive board
51410056-175 Input output module
CC-IP0101 Power supply drive board
CC-IP0101 51410056-175 Honeywell i/O expansion interface board
3BSE050091R65 Accessories for robot
PFEA112-65 Ethernet module
PFEA112-65 3BSE050091R65 Excitation communication adapter
PM511V16 3BSE011181R1 PLC controller
PPD115A102 ABB Analog input module
PP836A ABB Controller master unit
DSAI-130D 3BSE003127R1 ABB Frequency converter drive unit
DSAI130 ABB System board card
UAA326A02 ABB Controller module card
PCD231B101 ABB PLC control system
07CR41 ABB Servo drive module
SPBRC410 ABB Redundant controller cables are connected
DO620 ABB Power supply drive board
AI620 ABB Pressure transducer
AO610 ABB Power supply drive board
DI651 ABB board card
CI627 ABB Accessories for robot
RF615 RC610 Ethernet module
1TGB302003R0003 ABB Control input and output submodules
REF542PLUS ABB Digital input submodule
PPC902CE101 3BHE028959R0101 ABB Analog input module
RLM01 3BDZ000398R1 ABB Network interface module
REF610C11LCLR 60HZ abb Voltage measuring instrument
408368 IAM MODULE Robot axis calculation board
5SHX1445H0002 DCS card module
PFVI401 3BSE018732R1 Serial port measuring board
HIEE300024R4 UAA326A04 Pulse input submodule
SK829007-B Operating unit automatic controller
5SHY3545L0009 Power connection board
PPC380AE02 ABB Adapter module
PPC380AE02 Excitation power distributor
3BHB003688R0001 Ventilation terminal board
UFC760BE41 Programmable control module
UFC760BE42 Digital input module
PPD113B01-10-150000 SCR original thyristor
PFSK152 Control system module
PFSK151 Dc signal converter
PFEA113-20 Programmable controller
PM803F Robot power supply panel
UCD224A103 TCP module
FI830F Digital quantity output module
GCD207B101 CPU controller
DO880-1 ABB Soft starter
UNS0122A-P Temperature input module
XXD129A01 Communication module
PDD200A101 Inverter spare parts
UAD206A101 Input output processor
GDD471A001 Servo motor
Reviews
There are no reviews yet.